Home > News > Archive > s20141016
Rapid SPRAT confirmation of a Gaia transient: it's a dwarf nova! 1200 GMT 16 Oct 2014

SPRAT spectrum
A SPRAT spectral image of Gaia14aat with wavelength on the horizontal axis increasing to the right (coverage approx. 400-790 nm) and offset along the spectrograph slit on the y-axis. The vertical lines are emission from the atmosphere (the two brightest sky lines are labelled). The horizontal line is the black-body continuum emission from the binary system; superimposed onto this continuum are emission lines at very specific wavelengths. The hydrogen Balmer recombination line, H-alpha, is labelled, though other lines are also evident in the fully-reduced data.

One of the secondary goals of the Gaia Space Telescope is to survey the whole sky for variables and transients, objects that suddenly increase in brightness. The Gaia Photometric Science Alerts programme hosted by Cambridge University in the U.K. has recently gone public, and one of the first alerts released has been robotically observed by the Liverpool Telescope. As part of a campaign of rapid follow-up observations with the newly-commissioned SPRAT spectrograph, a group of LJMU astronomers have just released the first Astronomer's Telegram based on a Gaia transient alert.

The transient Gaia14aat was detected by the Gaia Photometric Science Alerts programme with a magnitude of 15.7 on 10th October. The team, all part of the Liverpool Telescope group at LJMU, measured the object's position precisely. They then identified the progenitor of the outburst in archival Sloan Digital Sky Survey (SDSS) images as an object with an r-band (red) magnitude of 18.9. The target had thus suddenly brightened by over three magnitudes; that's an increase in luminosity of more than 15 times.

The question then was: what is Gaia14aat?

Using the SPRAT spectrograph installed on the Liverpool Telescope, the group obtained a 10 minute spectrum of the object on October 15th. The spectrum covers the wavelength range of 400 to 790 nanometres and exhibits emission lines from hot atomic hydrogen: a bright H-alpha line at 656 nm and fainter H-beta and H-gamma lines at 486 and 434 nm.

Observing with SPRAT involves first taking an image (so that the target can be identified and moved onto the spectrograph slit). This "white light" acquisition image can also be used for science, however, and was in this case used to estimate the r-band magnitude of the target, which by the date of the LT observations had faded to about 18.5, close to the SDSS value. The object had already returned to its quiescence state in the 5 days since the Gaia detection. Clearly, time is of the essence when observing Gaia transients!

Based on the duration and brightness of the transient and the emission features in the SPRAT spectrum, the team believe that Gaia14aat is a dwarf nova outburst in a hydrogen-rich cataclysmic variable. Dwarf novae are binary systems in which a white dwarf star accretes matter from a companion; cataclysmic variables are stars which irregularly increase in brightness by a large factor, then drop back down to a quiescent state.

Gaia14aat will undoubtedly be the first of many transients discovered by the Gaia Space Telescope and subsequently observed by the LT. These early observations illustrate the power of SPRAT for categorising faint transients, and the importance of rapid response and robotic operations. Exciting times lie ahead.

The LJMU team of Andrzej Piascik, Iain Steele, Chris Copperwheat and Chris Davis would like to acknowledge the ESA Gaia mission and particularly the DPAC Photometric Science Alerts Team.